
GNU Smalltalk User’s Guide
GNU Smalltalk Version 1.1.1

by Steven B. Byrne

Copyright c© 1990, 1991 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the GNU Copyright statement is avail-
able to the distributee, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1

Introduction

GNU Smalltalk is an implementation that closely follows the Smalltalk-80 language (tm
ParcPlace Systems) as described in the book Smalltalk-80: the Language and its Imple-
mentation by Adele Goldberg and David Robson, which will hereinafter be referred to as
“the Blue Book”.

The Smalltalk programming language is an object oriented programming language. This
means, for one thing, that when programming you are thinking of not only the data that
an object contains, but also of the operations available on that object. The object’s data
representation capabilities and the operations available on the object are “inseparable”; the
set of things that you can do with an object is defined precisely by the set of operations,
which Smalltalk calls methods, that are available for that object. You cannot even examine
the contents of an object from the outside. To an outsider, the object is a black box that
has some state and some operations available, but that’s all you know.

In the Smalltalk language, everything is an object. This includes variables, executable
procedures (methods), stack frames (called method contexts or block contexts), etc. Each
object is an instance of a class. A class can be thought of as a datatype and the set
of functions that operate on that datatype. An instance is a particular variable of that
datatype.

When you want to perform an operation on an object, you send it a message, and the
object performs an operation that corresponds to that message. For example, to print an
object, you’d send it the message print, thus:

randomObject print

The message that you send is actually the name of a method (procedure) to invoke.
When you send a message to an object, Smalltalk tries to find a method that’s defined
for that type of object. It first looks in the object’s class for a method that matches. If
none is found there, it looks in the object’s parent class, then the grandparent class, and so
on. At the top of the class structure is a class called Object, which has no parent. If the
method is not found by the time that the searching gets to the methods of class Object, an
error occurs. This error is signaled by sending the original object a doesNotUnderstand:

message, which, if not intercepted by the object’s class or any parent class, will be handled
by Object itself by reporting the error to the user and printing a backtrace of the methods
that had been invoked at the time the error occurred.

3

1 Installation

1.1 Which files to examine before compiling

Before compiling GNU Smalltalk, you’ll want to examine some files, and adjust them to
suit the environment that you’re running in.

The files that need to be examined are:

1. mstpaths.h-dist

2. Makefile

mstpaths.h-dist needs to be copied to mstpaths.h and edited to reflect your directory
structure. This defines where GNU Smalltalk will look by default for the kernel method
definition files and where it will look for the saved Smalltalk binary image. As distributed,
these default to /usr/local/smalltalk/. If you plan on installing the GNU Smalltalk
system elsewhere, you will want to edit these in mstpaths.h.

Also, you may want to examine the first part of Makefile. This file defines which
compiler you will use, the mail path to the GNU Smalltalk maintainer, etc.

1.2 Compiling GNU Smalltalk

If you have made the modifications as described in the previous section, you should be ready
to build GNU Smalltalk. First, you should configure GNU Smalltalk for the particular
machine and operating system that you are on. The current list of supported (i.e., known
working) platforms is given in the sections on supported implementations (see Section 1.3
[Implementations], page 4).

To perform this configuration, merely type:

config.mst platform

where platform is one of the supported hardware/software platforms of GNU Smalltalk.
This will create a file called mstconfig.h that is used by the GNU Smalltalk system to
tailor certain behaviors.

After you’ve configured GNU Smalltalk, and you’re satisfied with the settings in
Makefile and mstpaths.h, you can compile the system by typing:

make

Smalltalk should compile and link with no errors. Before you make any further changes
to the Smalltalk system, you should also do

make setup

which will create a copy of all of the Smalltalk files in a subdirectory called ./orig. This
step is optional, but useful for the following reason: any changes or fixes that you make to
the GNU Smalltalk system (such as bug fixes or enhancements) can, at some later point in
time, be automatically diffed by doing

make diffs

This is the preferred way to report changes or fixes to the system.

After doing a make diffs, and sending off the differences (or at least squirreling away a
copy of the mst.diffs file that make diffs creates) you can do another make setup to set

4 GNU Smalltalk User’s Guide

the original state to be the current state. As a shortcut, you can produce your differences
and mail them to the GNU Smalltalk maintainer (me :-) in one operation by doing:

make mail-diffs

Note: If you add files to the top level Smalltalk directory that you want to be included
in the diffs, you must add them to the list of files in mstfiles. This includes top level
directories. The mstfiles file drives the diffs system and the make setup system.

After you have successfully built the GNU Smalltalk interpreter, you can test it by
invoking it. You should be able to invoke Smalltalk, thus:

mst -V

You should see the various classes being loaded one by one. At the end you should see
a message of the form:

Processing CFuncs.st

Processing Autoload.st

"GC flipping to space 1...copied space = 100.0%...done"

Smalltalk 1.1.1 Ready

st>

At this point, you have a working GNU Smalltalk. Congratulations!!!

If more people than just yourself are going to be working on GNU Smalltalk, or if you
just wish to be a bit more tidy, you’ll probably want to put copies of the kernel method
definitions in the directory that is mentioned in mstpaths.h as KERNEL_PATH. You can do
this by typing (using /usr/local/smalltalk as an example):

cp *.st /usr/local/smalltalk

assuming that you have previously created that directory.

You will also want to create the image file in the proper place (see Section 3.1 [General
Features], page 11, for info about what an image file is). You should switch to the directory
that you want the Smalltalk binary image to live in, and invoke Smalltalk. It should reload
the kernel definition files and produce a new binary image. One small issue with this
approach is that the file names associated with the method definitions may be incorrect if
the kernel definition files are in the same directory that Smalltalk is invoked in when you
create the binary image. Smalltalk will function completely normally, except that if you
try to get the source code for a method, you will probably lose. To avoid such lossage,
you can switch to a directory that does not have the Smalltalk kernel definition files in it,
run Smalltalk to create the binary image, and then move or copy the image file to its final
home. Yes, this is clumsy, and yes, I will fix this in a future release.

1.3 Implementations

GNU Smalltalk is known to have run on the following machines, operating systems, and
compilers:

Machine Operating system C compiler

Apollo 3000,4000,10000 Domain/OS 10.1 cc

Atari TOS gcc

Chapter 1: Installation 5

DECStation 3100 Ultrix (2.1) cc

Encore Multimax ??? cc

HP 9000/{300,800} HP-UX (800=7.0,300=6.5) cc

Interactive 386 System V.3

Sony News 1810 NEWOS 3.2 cc

Sun3,Sun4 SunOS 3.5, 4.0.1 gcc 1.35, 1.37; cc

NeXT 1.0 cc (gcc 1.34)

Pyramid OSx4.1 cc

Sequent ??? cc

SGI Iris-4D ??? cc

Tektronix 431[5-7], 9? ??? cc

VAX BSD 4.3/Mach cc

The names of the supported configurations (as given to config.mst) are:

config.mst target Machine

apollo Apollo 3000 & 4000 (Domain/OS 10.1 or later)

apollo-88k Apollo 10000

atari Atari ST

ds3100 DECStation 3100 (2.1)

encore Encore Multimax

hp9k300 HP 9000 series 300 (hp-ux 6.5)

hp9k800 HP 9000 series 800 (hp-ux 7.0)

iris4d SGI Iris 4D

i386-sysv Interactive Systems 386 System V.3

news Sony News 3.2

next NeXT, OS version 1.0

pyr-bsd Pyramid

sequent Sequent

sun-os3 Sun 2’s 3’s and 4’s, SunOS 3.x

sun-os4 Sun 2’s 3’s and 4’s, SunOS 4.0.x

tek4310 Tektronix 431x

vax BSD derivative

1.4 Readline interface for GNU Smalltalk

The readline library is a piece of technology that allows for Emacs style command editing
(control keys move forward and back through what has been typed, C-p and C-n move to
previous and next commands that have been typed, etc.) from within GNU Smalltalk. It
actually is the exact same readline library that comes with Bash; for that reason, it is not
supplied with GNU Smalltalk.

To use readline with GNU Smalltalk, you must first obtain a version of the readline
library. The readline library is now available as a standalone distribution from standard
GNU archives, or you may use the one which comes with Bash distributions. Copy (or make
a link to) the readline to a directory in the Smalltalk top level directory called ./readline.
Edit the Makefile and uncomment the line

#READLINE = -DUSE_READLINE

6 GNU Smalltalk User’s Guide

Now do:

make clean

This will ensure that the proper files which depend on the readline library are recompiled.

Now invoke make. Smalltalk should link and run normally, with the exception that the
readline functionality is enabled.

7

2 Invoking GNU Smalltalk

2.1 Command line arguments

GNU Smalltalk may be invoked via the following command:

mst [flags ...] [file ...]

When you first invoke GNU Smalltalk, it will attempt to see if any of the kernel method
definition files are newer than the last saved binary image in the current directory (if there
is one). If there is a newer kernel method definition file, or if the binary image file (called
mst.im) does not exist, a new binary image will be built by loading in all the kernel method
definition files, performing a full garbage collection in order to compact the space in use,
and then saving the resulting data in a position independent format. Your first invocation
should look something like this:

"GC flipping to space 1...copied space = 100.0%...done"
Smalltalk 1.1.1 Ready

st>

If you specify file, that file will be read and executed and Smalltalk will exit when end
of file is reached. If you specify more than one file, each will be read and processed in turn.
If you don’t specify file, standard input is read, and if the standard input is a terminal, a
prompt is issued. You may specify - or -- for the name of a file to invoke an explicit read
from standard input.

The flags may be specified one at a time, or in a group. A flag or a group of flags always
starts off with a dash to indicate that what follows is a flag or set of flags instead of a file
name. In the current implementation the flags can be intermixed with file names, but their
effect is as if they were all specified first. The various flags are interpreted as follows:

-c When this flag is set and a fatal signal occurs, a core dump is produced after
an error message is printed and the stack has been backtraced. Normally, the
backtrace is produced and the system terminates without dumping core.

-d Declaration tracing...prints the class name, the method name, and the byte
codes that the compiler is generating as it compiles methods. Only for files
that are named explicitly on the command line; kernel files that are loaded
automatically as part of rebuilding the image file do not have their declarations
traced.

-D Like the -d flag, but also includes declarations processed for the kernel files.

-e Prints the byte codes being executed as the interpreter operates. Only works
for those executions that occur after the kernel files have been loaded and the
image file dumped.

-E Like the -e flag, but includes all byte codes executed, whether they occur during
the loading of the kernel method definition files, or during the loading and
execution of user files.

-h or -H Prints out a brief summary of the command line syntax of GNU Smalltalk,
including the definitions of all of the option flags, and then exits.

8 GNU Smalltalk User’s Guide

-i Ignore the saved image file; always load from the kernel method definition files.
Setting this flag bypasses the normal checks for kernel files newer than the image
file, or the image file’s version stamp out of date with respect to the Smalltalk
version. After the kernel definitions have been loaded, a new image file will be
saved.

-I file Use the image file named file as the image file to load. Completely bypasses
checking the file dates on the kernel files and standard image file.

-p This flag is typically not used by the user; it is for the Smalltalk interactor
mode within GNU Emacs (see st.el).

-q Suppress the printing of execution information while GNU Smalltalk runs. Mes-
sages about the beginning of execution or how many byte codes were executed
are completely suppressed when this flag is set.

-r Disables certain informative I/O; this is used by the regression testing system
and is probably not of interest to the general user.

-v Prints out the Smalltalk version number. Has no other effect on execution.

-V Enables verbose mode. When verbose mode is on, various diagnostic messages
are printed, such as the name of each file as it’s loaded.

-y Turns on parser debugging. Not typically used.

2.2 Startup sequence

When GNU Smalltalk is invoked, it tries to find the saved binary image file. If this is found,
it compares the write dates of all of the kernel method definition files against the write date
of the binary image file. If any of the kernel files are newer, or if the image file cannot be
found, or if the -i flag is set, the image file is ignored, all of the kernel method definition
files are loaded and then the binary image file is saved.

Smalltalk first looks for the saved image file, called mst.im in the current directory,
to allow for overriding the system default image file. If that doesn’t exist, it checks the
SMALLTALK_IMAGE environment variable, and if that’s defined, it tries to find the image file
in the directory given by SMALLTALK_IMAGE, which again allows individual users to override
the system default location for the image file. If SMALLTALK_IMAGE is not defined, Smalltalk
will use the definition of IMAGE_PATH, as defined in mstpaths.h, which is compiled in when
the Smalltalk system is first built.

In a similar fashion, Smalltalk looks for each of the kernel method definition files in the
current directory, to allow for explicit overriding of the installed method definition files.
If they cannot be found in the current directory, and the SMALLTALK_KERNEL environment
variable is defined, the directory that environment variable refers to is examined for the
kernel file(s), which again allows individual users to override the system default location for
kernel files. If SMALLTALK_KERNEL is not defined, Smalltalk uses the definition of KERNEL_
PATH, which is also defined in mstpaths.h and compiled into the system.

Even if the image file is more recent than all the kernel definition files, if the version of
Smalltalk that created the image file is different from the one that’s trying to load it, or if
the size of the OOP table is different between image save time and image load time, or if
the -I flag is specified, the image file will be ignored.

Chapter 2: Invoking GNU Smalltalk 9

The set of files that make up the kernel method definitions can be found in mstmain.c,
in the standardFiles variable. Each file is loaded in turn. Once they have all been loaded, a
full garbage collection is performed, and the entire contents of the object table and object
memory are dumped to a file called mst.im in the current directory.

At this point, independent of whether the binary image file was loaded or created, any
blocks that were marked as init blocks (see Section 3.2.5 [Init Blocks], page 15) are invoked
(in the order of their declaration).

After the init blocks have been executed, the user initialization file (see Section 2.5 [Init
file], page 10) (if any) is loaded.

Finally, if there were any files specified on the command line, they are loaded, otherwise
standard input is read and executed until an EOF is detected.

2.3 Syntax of GNU Smalltalk

The language that Smalltalk accepts is based on the file out syntax as shown in the Green
Book, also known as Smalltalk-80: Bits of History, Words of Advice by Glenn Krasner. The
entire grammar of GNU Smalltalk is described in the mst.y file, but a brief description may
be in order:

<statements> !

Executes the given statements immediately. For example,

16rFFFF printNl !

prints out the decimal value of hex FFFF, followed by a newline.

Smalltalk quitPrimitive !

exits from the system. You can also type a C-d to exit from Smalltalk if it’s reading
statements from standard input.

! <class expression> methodsFor: <category name> !

<method definition 1> !

<method definition 2> !

...

<method definition n> ! !

This syntax is used to define new methods in a given class. The <class expression> is
an expression that evaluates to a class object, which is typically just the name of a class,
although it can be the name of a class followed by the word class, which causes the method
definitions that follow to apply to the named class itself, rather than to its instances. Two
consecutive bangs terminate the set of method definitions. <category name> should be a
string object that describes what category to file the methods in.

!Float methodsFor: ’pi calculations’!

radiusToArea

^self squared * Float pi !

radiusToCircumference

^self * 2 * Float pi ! !

It also bears mentioning that there are two assignment operators: _ and :=. Both are
usable interchangeably, provided that they are surrounded by spaces. The GNU Smalltalk

10 GNU Smalltalk User’s Guide

kernel code uses the _ form exclusively, as this is the correct mapping between the as-
signment operator mentioned in the Blue Book and the current ASCII definition. In the
ancient days (like the middle 70’s), the ASCII underscore character was also printed as a
back-arrow, and many terminals would display it that way, thus its current usage.

The return operator, which is represented in the Blue Book as an up-arrow, is mapped
to the ASCII caret symbol ^.

A complete treatment of the syntax of the language is beyond the scope of this document.
Please refer to the Blue Book (or the Purple Book, if that’s the only Smalltalk-80 book
available) for details of the syntax and semantics of the Smalltalk language.

2.4 Operating GNU Smalltalk

You operate GNU Smalltalk by typing in expressions to the ‘st>’ prompt, and/or reading
in files that contain Smalltalk code.

At some time, you may wish to abort what GNU Smalltalk is doing and return to the
command prompt. You can use C-c to do this. Note that the C-c handling is relatively
new, and somewhat immature. For example, typing C-c while loading a file may not work,
and it won’t break out of C code that hasn’t been called via the C callout mechanism. Still,
it’s a vast improvement over not having anything at all :-).

2.5 Per-user init files

When GNU Smalltalk is invoked, it will examine your home directory for a file with the
name .stinit. If this file exists, it is loaded as a normal Smalltalk file. This file can
be used for per-user customizations (such as turning off garbage collection messages), and
definitions.

This file is always loaded; there is no current way to have a file loaded only before main
binary image is created. In version 1.2, this problem is fixed.

2.6 Running the test suite

GNU Smalltalk comes with a set of files that provides a simple regression test suite.

To run the test suite, you should be connected to top-level the Smalltalk directory. Type

make regress

You should see the names of the test suite files as they are processed, but that’s it. Any
other output indicates some problem. The only system that I know of which currently fails
the test suite is the NeXT, and this is apparently due to their non-standard C runtime
libraries.

The test suite is by no means exhaustive. One good way to help the GNU Smalltalk
project, and learn some Smalltalk in the process, is to add files and tests to the test suite
directory. Ideally, the test suite would be used as the “go/nogo” gauge for whether a
particular port of GNU Smalltalk is really working properly.

11

3 Features of GNU Smalltalk

The following sections describe of the various features of GNU Smalltalk, version 1.1.1, and
discuss differences from the Smalltalk-80 language which is described in the Blue Book.

3.1 General Features

GNU Smalltalk supports the following features of general interest:

‘save binary file’
This allows you to snapshot the current state of the GNU Smalltalk virtual
machine. This means that all objects are saved to a file that can be loaded
rapidly at a later point in time. There are two messages that you can use:

SystemDictionary snapshot

This saves the current state of the GNU Smalltalk system to a
file called mst.im. When you later invoke GNU Smalltalk, this
file will be used for binary loading if none of the kernel files has
a more recent file modification date, if the GNU Smalltalk version
number is the same as the one that created the image file, and
if the size of the object table has not changed between the time
that the image file was dumped and the time that the image file is
loaded. Note that the instance’s class that you send this message
to is SystemDictionary; in practice, you send this message to the
sole instance of SystemDictionary, Smalltalk.

SystemDictionary snapshot: aString

This operates exactly like the snapshot message above, except that
the string argument you supply is used as the name of the file to
save the image to. However, since you currently cannot specify any
other file name for the image file to load from other than mst.im,
this capability is of limited utility (you could save several snapshots
throughout a run, and move the one that you were happy with to
mst.im).

‘incremental garbage collection’
This improves apparent performance by eliminating pauses while garbage col-
lection runs. There is a message that is printed when a garbage collector flip
occurs; this is can be suppressed by doing:

Smalltalk gcMessage: false!

‘Smalltalk editing mode for GNU Emacs’
This mode supports editing Smalltalk method definitions (see Section 3.2.6
[Edit], page 15, for details on how to access this package, and see Chapter 4
[Emacs], page 21, for a description of the Smalltalk editing mode for GNU
Emacs).

3.2 Additional features of GNU Smalltalk

In this section, the features which are specific to GNU Smalltalk are described. These
features include support for calling C functions from within Smalltalk, accessing UNIX

12 GNU Smalltalk User’s Guide

environment variables, and controlling various aspects of compilation and execution moni-
toring.

3.2.1 Using the C callout mechanism

To use the C callout mechanism, you first need to inform Smalltalk about the C functions
that you wish to call. You currently need to do this in two places: 1) you need to establish
the mapping between your C function’s address and the name that you wish to refer to it
by, and 2) define that function along with how the argument objects should be mapped to
C data types to the Smalltalk interpreter. As an example, let us use the pre-defined (to
GNU Smalltalk) functions of system and getenv.

First, the mapping between these functions and string names for the functions needed
to be established in mstcint.c. In the function initCFuncs, the following code appears:

extern int system();

extern char *getenv();

defineCFunc("system", system);

defineCFunc("getenv", getenv);

Any functions that you will call from Smalltalk must be similarly defined in this routine.

Second, we need to define a method that will invoke these C functions and describe its
arguments to the Smalltalk runtime system. Here are the definitions for the two functions
system and getenv (taken from CFuncs.st)

Behavior defineCFunc: ’system’

withSelectorArgs: ’system: aString’

forClass: SystemDictionary

returning: #int

args: #(string)!

Behavior defineCFunc: ’getenv’

withSelectorArgs: ’getenv: aString’

forClass: SystemDictionary

returning: #string

args: #(string)!

The various keyword arguments are described below. Note that we send the defineC-
Func:... message to the Behavior class to define the new methods, even though the methods
may be installed in some class other than Behavior.

The arguments are as follows:

defineCFunc: ’system’

This says that we are defining the C function system. This name must be
EXACTLY the same as the string passed to the defineCFunc routine in initC-
Funcs.

withSelectorArgs: ’system: aString’

This defines how this method will be invoked from Smalltalk. The name of the
method does not have to match the name of the C function; we could have just
as easily defined the selector to be ’rambo: fooFoo’; it’s just good practice to

Chapter 3: Features of GNU Smalltalk 13

define the method with a similar name and the argument names to reflect the
data types that should be passed.

forClass: SystemDictionary

This specifies where the new method should be stored. In our case, the method
will be installed in the SystemDictionary, so that we would invoke it thus:

Smalltalk system: ’lpr README’ !

Again, there is no special significance to which class receives the method; it
could have just as well been Float, but it might look kind of strange to see:

1701.0 system: ’mail sbb@eng.sun.com’ !

returning: #int

This defines the C data type that will be returned. It is converted to the
corresponding Smalltalk data type. The set of legal return types is:

char Single C character value

string A C char * value, converted to a Smalltalk string

symbol A C char * value, converted to a Smalltalk symbol

int A C int value

long A C long value

double A C double value, converted to an instance of Float

void No returned value

cObject An anonymous C pointer value; useful to pass back to

some C function later

smalltalk An anonymous (to C) Smalltalk data value; should have

been passed to C at some point in the past.

args: #(string)

This is an array of symbols that describes the types of the arguments in order.
For example, to specify a to call open(2), the arguments might look something
like:

args: #(string int)

The following argument types are supported; see above for details.

unknown Smalltalk will make the best conversion that it can

for this object; see the mapping table below

char passed as "char", which is promoted to "int"

string passed as "char *"

stringOut passed as "char *", the contents are expected to be

overwritten with a new C string, and the object that

was passed becomes the new string on return

symbol passed as "char *"

byteArray passed as "char *", even though may contain NUL’s

int passed as "int"

long passed as "long"

double passed as "double"

variadic an Array is expected, each of the elements of the

array will be converted

cObject C object value passed as "long" or "void *"

14 GNU Smalltalk User’s Guide

smalltalk Pass the object pointer to C. The C routine should

treat the value as a pointer to anonymous storage.

This pointer can be returned to Smalltalk at some

later point in time.

Table of parameter conversions:

Declared param type Object type C parameter type used

smalltalk Object void *

long Integer long

unknown Integer long

int Integer int

char Integer int

int Boolean (True, False) int

char Boolean (True, False) int

unknown Boolean (True, False) int

long Boolean (True, False) long

char Character int (C promotion rule)

unknown Character int

string String char *

stringOut String char *

unknown String char *

symbol Symbol char *

string Symbol char *

unknown Symbol char *

byteArray ByteArray char *

unknown ByteArray char *

double Float double (C promotion)

unknown Float double

cObject CObject void *

unknown CObject void *

variadic Array each element is passed

according to "unknown"

3.2.2 UNIX file-IO primitive messages

The following methods are defined for the FileStream class:

open: fileName mode: fileMode

Returns an instance of FileStream. The instance accesses a file called fileName
(which should be a String) with mode fileMode (which should also be a String,
something that fopen(3) would accept as the mode, such as ’r’, ’w’, etc.). The
elements of the stream are characters.

The following methods are defined for instances of FileStream:

close Close the given FileStream. Any further messages sent to the file stream are
in error and have undefined behavior.

next Returns the next character from the stream (an instance of Character).

Chapter 3: Features of GNU Smalltalk 15

nextPut: aChar

Stores the character (which should be an instance of Character) as the next
character of the receiver.

position: bytePosition

Sets the current position of the receiver to be bytePosition, with the beginning
of file being denoted by zero.

position Returns an integer that indicates the current position within the FileStream.
This is zero-based.

contents Returns a String that represents the entire remaining contents of the
FileStream.

atEnd Returns true if the FileStream object is at end of file, false otherwise.

size Returns the size in bytes of the given FileStream instance (if known).

In addition, the three files, stdin, stdout, and stderr are declared as global instances
of FileStream that are bound to the proper values.

Also, Object defines two other methods: print and printNl. These both do a printOn:
to stdout, the printNl appends a newline to the end of the printed result.

3.2.3 The system message

SystemDictionary system: aString

This message invokes system(3), passing the string aString to it. It returns an
integer which is whatever system(3) returns.

3.2.4 The getenv message

SystemDictionary getenv: aString

This message does a getenv(3) on string aString, and returns the result. The
result is either a string, or nil if there was no environment variable with the
name aString.

3.2.5 Initialization blocks

SystemDictionary addInit: aBlock

This message adds aBlock to the set of init blocks that the system has. Init
blocks are invoked after loading binary image files or kernel files, but before
loading any command line files or reading from standard input. aBlock should
be a block that takes no arguments.

3.2.6 Editing method definitions

You can have GNU Smalltalk invoke GNU Emacs to edit the source code definition of a
method. You must have an explicit load of the st.el file in your .emacs file in order to do
this. See Section 4.1 [Autoloading], page 21.

If you send the method’s class the edit: message, and pass the method’s name as the
argument, and if you can invoke GNU Emacs by typing emacs, you should be able to exercise
this feature.

16 GNU Smalltalk User’s Guide

Example

"Edit the definition of the edit: method itself!"

Behavior edit: #edit: !

Note that this only allows you to visit the method definition; this does not cause the
method to be redefined after you edit it. However, it is conceivable that could create a
method that does this in a fairly simple way.

3.2.7 Explicitly loading files

The fileIn: message sent to the FileStream class, with a file name as a string argument,
will cause that file to be loaded into Smalltalk.

For example,

FileStream fileIn: ’foo.st’ !

will cause foo.st to be loaded into GNU Smalltalk.

3.2.8 Memory accessing methods

GNU Smalltalk provides methods for directly accessing real memory. You may access
memory either as individual bytes, or as 32 bit words. You may read the contents of
memory, or write to it. Due to the limitations of Integers in GNU Smalltalk, you can only
deal with word memory as 31 bit quantities.

You may also determine the real memory address of an object or the real memory
address of the OOP table that points to a given object, by using messages to the Memory

class, described below.

There are two basic classes which provide methods to access memory: ByteMemory and
WordMemory. The methods for these classes are as follows:

ByteMemory class at: address

Returns the byte at address as an Integer. address is also an Integer.

ByteMemory class at: address put: value

Sets the byte at address (an Integer) to be value (an Integer in the range of
0 to 255).

WordMemory class at: address

Returns an Integer that represents the contents of address, which should also
be an Integer. Depending on the machine architecture, you’ll probably want
to ensure that address is a multiple of 4. Note that this method does not
currently work on little endian architectures (such as a VAX).

WordMemory class at: address put: value

Stores the Integer value into real memory at address. Same alignment cautions
as above, and also doesn’t currently work on little endian architectures.

Bigendian

A global variable that is set to true on machine architectures where the most
significant byte of a 32 bit integer has the lowest address (e.g. 68000 and Sparc),
and false on architectures where the least significant byte occurs at the lowest
address (e.g. VAX).

Chapter 3: Features of GNU Smalltalk 17

To find out the real memory address of an object or its OOP table entry, you may use
one of the methods described below.

Memory class addressOfOOP: anObject

Returns the address of the OOP for anObject. The address is an Integer and
will not change over time (i.e. is immune from garbage collector action).

Memory class addressOf: anObject

Returns the address of the actual object that anObject references. Note that
this address is only valid until the next GC flip; thus it’s pretty risky to count
on the address returned by this method for very long.

3.2.9 Producing backtraces

SystemDictionary backtrace

When you send this message to a system dictionary (i.e. Smalltalk, the only
system dictionary available), it produces a backtrace of the methods that are
the ancestors of the currently executing method. This backtrace is exactly like
the one that is printed when the interpreter encounters an error.

3.2.10 Controlling tracing of bytecode execution

SystemDictionary executionTrace: aBoolean

This method controls whether byte codes are printed as the interpreter processes
them or not. It has the exact same effect as the command line switch -e, but
allows for very fine grain control of the tracing. Use true to enable tracing,
and false to disable tracing.

3.2.11 Printing Smalltalk stack during execution

SystemDictionary verboseTrace: aBoolean

This method is used in conjunction with SystemDictionary executionTrace:.
When given the argument true, and execution tracing is on, it causes the top
element of the Smalltalk stack to be printed before each byte code is executed.

3.2.12 Assistance using C debuggers

SystemDictionary debug

This primitive method calls a C routine which is called debug. This can be
useful in the following way: you want to get access to dbx or gdb at a particular
point in the execution of a Smalltalk method. There typically is no easy way to
do this. In the GNU Smalltalk system, the C routine called debug exists solely
so that you can put a breakpoint in it from a debugger such as dbx (it is an
empty routine, and thus harmless). You put a call to the C debug routine in
the C function that you want to debug.

So, if you put a breakpoint in the debug routine, and invoke the debug method
just before the code which you want to debug, you gain control for detailed
debugging.

18 GNU Smalltalk User’s Guide

3.2.13 Control C profiling during execution of methods.

SystemDictionary monitor: aBoolean

This primitive method allows the user to enable or disable the generation of C
profiling information during the operation of the interpreter. You must modify
the Makefile to switch the compilation to profiling mode and recompile the
entire system for this to take effect.

When you pass true to this method, you enable the collection of profiling
data during the operation of the interpreter to be later analyzed by the gprof
program. Passing false disables this collection. You can use this facility to
closely monitor the operation of the interpreter over a given set of Smalltalk
code to see where it’s spending its time.

3.2.14 Controlling generation of GC flip messages

SystemDictionary gcMessage: aBoolean

This message allows the user to control whether a message is printed each time
the garbage collector flips between old and new space. The default state is
true, meaning that when the garbage collector performs a flip, a message will
be printed. If you supply false as the argument of this message, the message
generation is disabled until you turn it back on.

3.2.15 Explicit termination of GNU Smalltalk

SystemDictionary quitPrimitive

Invoking this method causes an immediate and unconditional exit from GNU
Smalltalk.

3.2.16 Alternate assignment operator

:= GNU Smalltalk allows the use of := as an alternative assignment operator in
addition to the standard _. This is for compatibility with other Smalltalk
implementations. Be sure to surround this operator with at least one space on
each side; failure to do so will cause parse errors.

3.3 Differences from Blue Book Smalltalk

The following is a brief description of the differences and omissions between GNU Smalltalk
and "Blue Book" Smalltalk (Smalltalk-80).

• No long integers (yet)

• No fractions (yet)

• Time values based on UNIX epoch of Jan 1, 1970 (although Date instances are based
on the Smalltalk base date of January 1, 1901).

• Millisecond times are since midnight, instead of since the "millisecond clock" turned
over.

• No async signals (yet)

• Beginnings of the technology for a graphical user interface, and beginnings of an in-
cremental development environment, but nowhere near what commercial Smalltalks
provide.

Chapter 3: Features of GNU Smalltalk 19

• Class Delay is not implemented (yet)

21

4 Smalltalk interface for GNU Emacs

GNU Smalltalk comes with its own Emacs mode for hacking Smalltalk code. It also provides
tools for interacting with a running Smalltalk system in an Emacs subwindow.

4.1 Autoloading GNU Smalltalk mode

To cause Emacs to automatically go into Smalltalk mode when you edit a Smalltalk file
(one with the extension .st), you need to add the following lines to your .emacs file:

(setq auto-mode-alist

(append ’(("\\.st$" . smalltalk-mode))

auto-mode-alist))

(autoload ’smalltalk-mode "~/smalltalk-1.1.1/st.el" "" t)

This presumes that you have placed Smalltalk as a subdirectory of your home directory;
if you have placed it somewhere else, you’ll need to change the file name mentioned in the
autoload line accordingly.

If you want additional speed, you can byte compile the st.el file, and change the
autoload line to refer to st.elc instead.

If you plan on using the edit: method to edit the source code of your methods, you’ll
want to explicitly load in the st.el or st.elc file instead of letting them autoload in. Use

(load "~/smalltalk-1.1.1/st.el")

instead of the autoload line.

It is also a good idea to put the main GNU Smalltalk directory in your EMACSLOAD-
PATH environment variable.

4.2 Smalltalk editing mode

The GNU Smalltalk editing mode is there to assist you in editing your Smalltalk code.
It tries to be smart about indentation (if you use newline at the end of a line). Also, if
you want to re-indent a line, use M-Tab. Since Smalltalk syntax is highly context sensitive,
the Smalltalk editing mode will occasionally get confused when you are editing expressions
instead of method definitions. In particular, using local variables, thus:

| foo |

foo _ 3.

^foo squared !

will confuse the Smalltalk editing mode, as this might also be a definition the binary operator
|, with second argument called foo. If you find yourself losing when editing this type of
expression, put a dummy method name before the start of the expression, and take it out
when you’re done editing, thus:

x

| foo |

foo _ 3.

^foo squared !

22 GNU Smalltalk User’s Guide

4.3 Smalltalk interactor mode

Several new features have been added to the Smalltalk editing mode for GNU Emacs. The
most exciting one is the Smalltalk interactor system, which basically allows you run in
GNU Emacs with Smalltalk files in one window, and Smalltalk in the other. You can, with
a single command, edit and change method definitions in the live Smalltalk system, evaluate
expressions, make image snapshots of the system so you can pick up where you left off, file
in an entire Smalltalk file, etc. It makes a tremendous difference in the productivity and
enjoyment that you’ll have when using GNU Smalltalk.

To start up the Smalltalk interactor, you must have a working GNU Smalltalk interpreter
somewhere in your PATH environment variable, and be running in GNU Emacs. You should
be in a buffer that’s in Smalltalk mode (which can be automatically enabled by adding
the proper magic to the auto-mode-alist, see Section 4.1 [Autoloading], page 21). For this
example, let’s use the file t.st. Visit this file, make sure that you’re in Smalltalk mode,
and type C-c m. A second window will appear with GNU Smalltalk running in it.

This window is in most respects like a Shell mode window. You can type Smalltalk
expressions to it directly and re-execute previous things in the window by moving the
cursor back to the line that contains the expression that you wish to re-execute and typing
return.

Notice the status in the mode line (e.g. ‘starting-up’, ‘idle’, etc). This status will
change when you issue various commands from Smalltalk mode.

When you first fire up the Smalltalk interactor, it puts you in the window in which
Smalltalk is running. You’ll want to switch back to the window with your file in it to
explore the rest of the interactor mode, so do it now.

Let’s try executing a range of code first. Mark the region around:

(’Welcome to GNU Smalltalk [’, Version, ’]

This file contains a wealth of goodies, not all packaged neatly.

It sort of grows by accretion, so you’’re likely to find most

anything in here.’) printNl.

Now type C-c e. The expression in the region is sent to Smalltalk and evaluated. The
status will change briefly to indicate that the expression is executing. This will work for
any region that you create. If the region does not end with an exclamation point (which is
syntactically required by Smalltalk), one will be added for you.

As a second example, move the cursor down to the region of code that looks like:

Object withAllSubclasses do:

[:subclass | (subclass name notNil and: [subclass comment isNil])

ifTrue: [subclass name print.

’ has no comment.’ printNl]

]

!

This code will find any class that doesn’t have a comment associated with it (I used this
to track down classes that needed commenting). Put the cursor somewhere between the

Chapter 4: Smalltalk interface for GNU Emacs 23

first and last lines and type C-c d. The entire expression will be sent to GNU Smalltalk, and
after scanning all the classes, GNU Smalltalk will report that class Delay has no comment.
This command (also invokeable as M-x smalltalk-doit) uses a simple heuristic to figure
out the start and end of the expression: it searches forward for a line that begins with
an exclamation point, and backward for a line that does not begin with space, tab, or the
comment character, and sends all the text in between to Smalltalk. If you provide a prefix
argument (by typing C-u C-c d for instance), it will bypass the heuristic and use the region
instead (just like C-c e does).

Now move a ways down to some text that looks like

!BlockContext methodsFor: ’debugging’!

callers

self inspect.

caller notNil

ifTrue: [caller callers]

!

Put the cursor on the line containing self inspect.. Type C-c c. Nothing much will
appear in the Smalltalk window, but what you’ve done is you’ve compiled the BlockCon-
text>>callers method. To test this, you can switch to the Smalltalk window and type

[’foo on you’] callers!

which will produce a simple backtrace of the invocation stack.

The C-c c command uses a similar heuristic to determine the bounds of the method def-
inition. Typically, you’ll change a method definition, type C-c c and move on to whatever’s
next. If you want to compile a whole bunch of method definitions, you’ll have to mark the
entire set of method definitions (from the methodsFor: line to the !!) as the region and
use C-c e.

After you’ve compiled and executed some expressions, you may want to take a snapshot
of your work so that you don’t have to re-do things next time you fire up Smalltalk. To do
this, you use the C-c s command, which creates a Smalltalk binary image called mst.im. If
you invoke this command with a prefix argument, you can specify a different name for the
image file, and you can have that image file loaded instead of the default one by using the
-I flag on the command line when invoking Smalltalk.

You can also evaluate an expression and have the result of the evaluation printed by
using the C-c p command. Mark the region and use the command.

To file in an entire file (perhaps the one that you currently have in the buffer that you
are working on), type C-c f. You can type the name of a file to load at the prompt, or just
type return and the file associated with the current buffer will be loaded into Smalltalk.

When you’re ready to quit using GNU Smalltalk (assuming that that happens some-
times), you can quit cleanly by using the C-c q command. If you want to fire up Smalltalk
again, or if (heaven forbid) Smalltalk dies on you, you can use the C-c m command, and
Smalltalk will be reincarnated. Even if it’s running, but the Smalltalk window is not visible,
C-c m will cause it to be displayed right away.

You might notice that as you use this mode, the Smalltalk window will scroll to keep the
bottom of the buffer in focus, even when the Smalltalk window is not the current window.

24 GNU Smalltalk User’s Guide

This was a design choice that I made to see how it would work. On the whole, I guess I’m
pretty happy with it, but I am interested in hearing your opinions on the subject.

Speaking of opinions, the whole Smalltalk interactor mode is quite young (about a week
old as I write this) and still could use some maturation. If you have comments or ideas
about how to improve this system, please let me know. I have been planning something
like this for a while, but even with a vision in my head of how it was going to work, I was
unprepared for just how much of a difference it makes when hacking Smalltalk. Hacking on
STIX was infinitely easier once I got this system operational.

One minor thing that you may note when using the interactor: if you try to get the
source code for a method that’s been compiled from the interactor, you will get garbage.
This is because I create temporary files to hold the method definitions and send a fileIn:

message to cause them to be loaded. The method definitions will point to this temporary
file as their source code instead of the real source code. This is not too hard to fix, and I
felt that it was an acceptable tradeoff to make in order to get the 1.1 release out as soon as
possible.

25

5 Smalltalk Interface to X (STIX)

This section describes STIX: the Smalltalk Interface to X.

5.1 What is STIX?

This version of GNU Smalltalk comes with a simple interface to X window. This interface is
currently pretty much a direct interface to the X protocol layer...it’s even lower than Xlib.
What it does provide, however, is a more object oriented framework for dealing with Xlib
objects.

STIX is an initial cut at an interface from Smalltalk to X. It is intended to be usable for
simple things, and my hope is that someone will help me out by filling in the missing parts
of the X protocol interface. Even with a later version of Smalltalk that contains call-ins
from C, the need for an interface at this level will persist.

STIX is somewhat of an experimental interface: the mapping of X Window protocol
functions to Smalltalk is not entirely straightforward. Thus, you may find that the current
implementation of STIX is not the cleanest way to provide such an interface. It is hoped,
however, that the next release will be substantially better organized, and the class hierarchy
will be more well defined.

STIX also has a simple implementation of the Pen class that is described in the Blue
Book...it is used to draw some of the graphics in the example.

5.2 Requirements for STIX

To be able to run STIX, you need to have a working version of X11 release 4 installed and
running on your machine. You must know where the include files for X can be found (often,
this is /usr/include/X11).

5.3 Running STIX

The STIX example has been designed to be as easy as possible to run. You should perform
the following steps:

1. Change your working directory to be the stix subdirectory of the Smalltalk directory.

2. Configure GNU Smalltalk using config.mst, as you did before compiling GNU
Smalltalk in the parent directory.

3. Edit the Makefile file and change the definition of XINCLUDE to point to the directory
that contains the include files for X.

4. Compile GNU Smalltalk by typing ‘make’.

5. Load and run the STIX example by typing

mst -Vi t.st

This will load normally, except that CFuncs.st will take a bit longer than it normally
does to load. The first time that you do this, you should see each of the kernel files
being loaded; if you don’t, it means that you are using a saved image, which won’t have
the STIX methods loaded in it. Once it’s loaded and the binary image is saved, you
should see several messages indicating that things are being executed, and, if you’re
successful, a window will appear that will let you know that it’s from Smalltalk. Be

26 GNU Smalltalk User’s Guide

sure to use the -i flag only the first time you build the STIX image; once it’s built,
you don’t want to use it again as it tells Smalltalk to ignore any image file it finds and
rebuilt the image from scratch.

27

6 Future directions and tasks for GNU Smalltalk

Presented below is the set of tasks that I feel need to be performed to make GNU Smalltalk
a more fully functional, viable system. They are presented in no particular order. I would
very much welcome any volunteers who would like to help with the implementation of one
or more of these tasks. Please write to me, Steve Byrne, currently at sbb@eng.sun.com if
you are interested in adding your efforts to the GNU Smalltalk Project.

Tasks:

• Port to other computers/operating systems. The code thus far has shown itself to be
relatively portable to various machines and UNIX derivatives. The architecture must
support 32 bit pointers and long integers, and have allocated addresses that are either
all positive or all negative. You’ll probably want a reasonable amount of paging area,
as GNU Smalltalk currently uses a fair amount of memory while it’s running.

• Comment the C code more thoroughly. The C source code for GNU Smalltalk could
stand a more thorough commenting. This includes things like describing the operation
of the byte code interpreter.

• Comment the Smalltalk code more thoroughly. In order to be more useful to neophyte
Smalltalk users, the method definition code should be commented to at least describe
the behavior of each method; ideally, the method definitions would have normal internal
commentary as well.

• Create a portable version of the Delay class primitive. This depends on the implemen-
tation of asynchronous signals, and needs to use some kernel call to set up an interrupt
after the appropriate number of milliseconds. Unfortunately, I do not have access to a
true System V UNIX box to find out what kernel call allows me to do this (BSD has
setitimer(2)).

• Add an instance variable Block- and MethodContexts that contains the actual class
in which the method was found. This will be used to improve the backtrace printing
code so that users can see how each message was resolved by seeing the class that the
executing method was finally found in. Block contexts don’t really need this, but they
should have the same number and organization of instance variables. Perhaps, the
vague references in the Blue Book about a ContextPart class refer to a class that’s
the parent of both BlockContext and MethodContext that holds the common instance
variables; this would probably be a variable in that class.

• Write a debugger for Smalltalk. You may note vestiges of this in this release. Basically,
my thinking is that the debugger would be written in Smalltalk, and would allow for
setting breakpoints at byte codes, getting method invocation backtraces, moving up
and down the invocation stack, inspecting and altering variables, possibly allowing for
source level debugging (needs cooperation from compiler), etc. I am willing to hear
other ideas on the subject; my mindset is inspired by the debugging capabilities of
present day Common Lisp systems. Perhaps this debugger could be integrated with
the Emacs editing mode to provide a simple way to indicate where to put breakpoints
and inspect variables.

• Add more test cases to the test suite. The test suite is much too small. Ideally, after
making changes to the Smalltalk system, you’d put it through its paces by running
with the test suite and make sure that you hadn’t broken anything.

28 GNU Smalltalk User’s Guide

• Write a C call-in to Smalltalk. The idea here is that C functions should be able to
send messages in Smalltalk, and receive results, which allows for true bi-directional
Smalltalk<=>C communication. Should allow for C signals to signal Smalltalk
semaphores, etc.

• Make Smalltalk more interfaceable to C: allow a C program to be the main program,
and it merely has to call initSmalltalk() before it tries to do Smalltalk things.

• Make Smalltalk C++ compatible (able to compile with C++). In order to allow people to
use C++ code with GNU Smalltalk, it would be convenient to have the GNU Smalltalk
system be entirely compilable with G++.

• Switch to using getopt. GNU Smalltalk currently uses a home-grown option parser;
this is primarily a standardization task.

• Write a byte-code Smalltalk compiler in Smalltalk. As a first step towards creating a
full Smalltalk compiler, duplicate the functionality provided by the internal byte code
compiler.

• Convert byte-code compiler to compile to machine code, possibly using the GCC back
end (if feasible). My thinking is to capitalize on some of the compiler technology that’s
used in Self to get high quality generated code.

• Improve the byte-code interpreter’s efficiency. Until the real compiler is completed, for
machine architectures that the code generator does not yet know about, and to make
for simple porting and bootstrapping, we will need a viable byte-code interpreter. The
current interpreter could stand a bit of tightening up.

• Implement LargeIntegers for Smalltalk.

• Implement Fractions for Smalltalk.

• Add machine/os type as a variable in Smalltalk dictionary. Perhaps via a #define in
the the configuration files, this would manifest itself as a method or global variable in
the Smalltalk dictionary. It might return a String, such as "Sun3os4", or a Symbol,
or perhaps have a couple of different values: machine type, operating system version,
etc.

• Design a conditional compilation mechanism, maybe like #+VAX in Common Lisp.
I am not entirely sure how this would work given Smalltalk’s syntax. We can do a
poor-man’s implementation today by conditionally doing fileIns of specific pieces of
code, but this is a little more crufty than is desirable.

• Switch from OOP table representation to direct pointer representation. Currently, all
references to objects point to an entry in an indirect table, called the OOP table. This
has advantages in that objects may be moved around (i.e. during garbage collection)
without having to worry about who has pointers to the object. It also allows for simple
enumeration of all instances of a particular class, and allows for a simple implementation
of the become: message. However, most present day Smalltalk implementations have
gotten away from this representation, and instead directly reference objects.

• Investigate switching to a generational garbage collector. Many of Smalltalk’s kernel
objects are relatively static, and having to sweep past them when garbage collecting
takes time. Also, some objects are very fleeting indeed (such as BlockContexts and
MethodContexts), and shouldn’t unnecessarily slow down garbage collection. Also
worth investigating is not creating real objects for methods; rather, have a method

Chapter 6: Future directions and tasks for GNU Smalltalk 29

cache (stack) that contains "proto-methods". Check at certain places for storing a
pointer to a method that’s a proto-method and migrate it to be a real one when that
happens.

• Improve the interactive inspector in GNU Emacs. Things to add include inspect this
object/expression; examine the selectors for this calls; fixup the handling of the temp
files so that file-outs of methods that have been incrementally redefined don’t lose big-
time. Also, editing object contents on the screen might be nice. This would make
the generally available GNU Smalltalk mode more and more like traditional Smalltalk
development environments.

• Flesh out the STIX system. There are still a number of the protocol items that have
yet to be coded; once they’re done, work can begin on a higher level interface (Xlib or
above). Things above Xlib might include menus and text type windows (things such
as you might find in Xt).

• Create an XWindow development system for Smalltalk. This would be a window-based
browser, similar to that which is available in commercial implementations of Smalltalk.

• Extend the quitPrimitive method to also take an argument, which is the value to
pass to the exit() system call.

• Add other interesting example classes, such as Directory, or Socket, i.e.

"Establish a connection to the mail system on PREP"

sock _ Socket onHost: ’prep.ai.mit.edu’ port: 25.

’HELO RAMBO’ printOn: sock.

sock nl.

...

(could also have symbolic names for the port numbers, but you get

the general idea...)

31

7 Acknowledgements

I would like to publically thank the following people, who have helped out in one way or
another since with this release (and the 1.2 release) of GNU Smalltalk:

Fritz Nordby, Michael Mellinger, Doug McCallum, Karl Berry, Dave Bodenstab,
Mark Wadsworth, Bill Trost, William Cook, Trip Becket, Alan Knight, Alistair Grant,
Michael Richardson, Andrew Gelsey, Kevin Hester, David MacKenzie, Doug Peters, Michael
Bushnell, Florin Spanachi, David England, Charles Johnson, David B. Serafini, R James
Noble, David Duke, Mark S. Johnson, Gary Campbell, Peter Dobcsany, Kent Williams,
Wilson Ho, Karl Kleinpaste, Len Tower, Paul Regenhardt, Joe Pallas, Peter Kropf, Mark
Bush, Per Bothner, Kevin Rigotti, Lance Norskog, Pascal Meheut, Richard Goerwitz, Horst
Duchene, Olivier Blanc and especially Jeff Baird.

(I apologize if I’ve left anyone out).

Some have contributed code, others have helped out with discussing implementation
issues, and others have done ports to various machines. I appreciate all of your efforts!!!

I must also thank the FSF for providing a wonderful set of tools with which GNU
Smalltalk was built. Although I don’t do it currently, I believe it is the case that all of
the tools that are needed for the construction and development of GNU Smalltalk are now
available from FSF (including make, tar, diff, and other random tools). My world is a
significantly better place thanks to the hard work of GNU people. THANK YOU!!!!

i

Table of Contents

Introduction . 1

1 Installation . 3
1.1 Which files to examine before compiling . 3
1.2 Compiling GNU Smalltalk . 3
1.3 Implementations . 4
1.4 Readline interface for GNU Smalltalk . 5

2 Invoking GNU Smalltalk . 7
2.1 Command line arguments . 7
2.2 Startup sequence . 8
2.3 Syntax of GNU Smalltalk . 9
2.4 Operating GNU Smalltalk . 10
2.5 Per-user init files . 10
2.6 Running the test suite . 10

3 Features of GNU Smalltalk 11
3.1 General Features . 11
3.2 Additional features of GNU Smalltalk . 11

3.2.1 Using the C callout mechanism . 12
3.2.2 UNIX file-IO primitive messages . 14
3.2.3 The system message . 15
3.2.4 The getenv message . 15
3.2.5 Initialization blocks . 15
3.2.6 Editing method definitions . 15
3.2.7 Explicitly loading files . 16
3.2.8 Memory accessing methods . 16
3.2.9 Producing backtraces . 17
3.2.10 Controlling tracing of bytecode execution 17
3.2.11 Printing Smalltalk stack during execution 17
3.2.12 Assistance using C debuggers . 17
3.2.13 Control C profiling during execution of methods. 18
3.2.14 Controlling generation of GC flip messages 18
3.2.15 Explicit termination of GNU Smalltalk 18
3.2.16 Alternate assignment operator . 18

3.3 Differences from Blue Book Smalltalk . 18

4 Smalltalk interface for GNU Emacs 21
4.1 Autoloading GNU Smalltalk mode . 21
4.2 Smalltalk editing mode . 21
4.3 Smalltalk interactor mode . 22

ii

5 Smalltalk Interface to X (STIX) 25
5.1 What is STIX? . 25
5.2 Requirements for STIX . 25
5.3 Running STIX . 25

6 Future directions and tasks for GNU Smalltalk . . 27

7 Acknowledgements . 31

	Introduction
	1 Installation
	Which files to examine before compiling
	Compiling GNU Smalltalk
	Implementations
	Readline interface for GNU Smalltalk

	2 Invoking GNU Smalltalk
	Command line arguments
	Startup sequence
	Syntax of GNU Smalltalk
	Operating GNU Smalltalk
	Per-user init files
	Running the test suite

	3 Features of GNU Smalltalk
	General Features
	Additional features of GNU Smalltalk
	Using the C callout mechanism
	UNIX file-IO primitive messages
	The system message
	The getenv message
	Initialization blocks
	Editing method definitions
	Explicitly loading files
	Memory accessing methods
	Producing backtraces
	Controlling tracing of bytecode execution
	Printing Smalltalk stack during execution
	Assistance using C debuggers
	Control C profiling during execution of methods.
	Controlling generation of GC flip messages
	Explicit termination of GNU Smalltalk
	Alternate assignment operator

	Differences from Blue Book Smalltalk

	4 Smalltalk interface for GNU Emacs
	Autoloading GNU Smalltalk mode
	Smalltalk editing mode
	Smalltalk interactor mode

	5 Smalltalk Interface to X (STIX)
	What is STIX?
	Requirements for STIX
	Running STIX

	6 Future directions and tasks for GNU Smalltalk
	7 Acknowledgements

